
  

  

Abstract— We propose a novel systematic approach to 

optimizing the design of concentric tube robots for 

neurosurgical procedures.  These procedures require that the 

robot approach specified target sites while navigating and 

operating within an anatomically constrained work space.  The 

availability of preoperative imaging makes our approach 

particularly suited for neurosurgery, and we illustrate the 

method with the example of endoscopic choroid plexus 

ablation.  A novel parameterization of the robot characteristics 

is used in conjunction with a global pattern search optimization 

method.  The formulation returns the design of the least-

complex robot capable of reaching single or multiple target 

points in a confined space with constrained optimization 

metrics. A particular advantage of this approach is that it 

identifies the need for either fixed-curvature versus variable-

curvature sections.  We demonstrate the performance of the 

method in four clinically relevant examples.   

I. INTRODUCTION 

  eurosurgery has been a leading test ground for 

image guided surgery [1], [2], but robotic 

neurosurgery remains largely an aspiration for the 

future [3], [4].  Robotic solutions permitting navigation 

within the cerebrospinal fluid spaces of the central nervous 

system could dramatically broaden options for the use of 

robots in this surgical specialty.  To address some general 

issues of robot design using concentric tube devices with 

piecewise constant curvature, we here consider an approach 

to the design of neurosurgically useful robots.  Specifically, 

we consider ways to improve choroid plexus coagulation as 

pioneered by Warf to treat hydrocephalus [5]. 

  Cerebrospinal fluid (CSF) is a clear, watery fluid formed 

by choroid plexus that surrounds the brain and spinal cord 

and fills the ventricles, open spaces within the brain (Fig. 1). 

Hydrocephalus is a condition of altered CSF homeostasis, 

resulting in an abnormal accumulation of CSF in the brain 

ventricles. Approximately 69,000 people are diagnosed with 
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hydrocephalus each year in the United States [6]. Untreated 

hydrocephalus leads to progressive neurological dysfunction 

and death.  

Endoscopic third ventriculostomy (ETV) is a surgical 

procedure which is used to treat certain forms of obstructive 

hydrocephalus, for example due to aqueductal stenosis, a 

narrowing of the duct connecting the third ventricle to the 

fourth ventricle called the aqueduct of Sylvius (Fig. 1). In 

ETV an opening is created in the floor of the third ventricle 

using an endoscope placed within the ventricular system 

(VS) through a burr hole in the skull (Fig. 2). This creates a 

natural bypass within the brain allowing the CSF to drain.  

ETV is less effective in children under one year of age 

[7]-[9]. Warf and colleagues have demonstrated that 

combined ETV and choroid plexus cauterization (CPC) is 

significantly more effective than ETV alone in treating 
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Fig. 2.  ETV procedure. Oblique view (A) demonstrating typical location 

of the burr hole and trajectory; midsagittal view (B) demonstrating 

location of ventriculostomy. Source: Neurosug Focus ©. 

 
Fig. 1.  Ventricular system (VS) of the brain consists of four cerebral 

ventricles: the paired lateral ventricles, and the midline third and fourth 

ventricles. Source: Mayfield Clinic ©. 
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hydrocephalus without a shunt in this patient population [7], 

[5], [10]. In infants with hydrocephalus ETV alone was 

successful in only 35% of patients, compared to 76% success 

for the combined ETV/CPC procedure [7]. In a combined 

ETV/CPC procedure, after the ETV has been performed, 

attention is turned to the CPC: beginning at the foramen of 

Monro and gradually moving posteriorly, the choroid plexus 

of the lateral ventricle is thoroughly cauterized using the 

Bugby wire and low-voltage monopolar coagulating current.  

Concentric tube robots are ideally suited for performing 

complex tasks as outlined above and required in minimally 

invasive neurosurgery: they possess cross sections 

comparable to needles and catheters, but are capable of 

substantial actively-controlled lateral motion and force 

application along their entire length. Since robot shape can 

be controlled, they enable navigation through the body along 

3D curves. Furthermore, the lumen of the tubes can house 

additional tubes and wires for controlling articulated tip-

mounted tools.  

An example is shown in Fig. 3. The level of stiffness of 

the tubes is selected such that each telescoping section 

dominates all those sections extending from it. The result is 

that the shape and displacement of each telescoping section 

is kinematically decoupled from that of the proximal 

sections. In addition, each telescoping section is designed to 

have either fixed or variable curvature. A fixed curvature 

section relaxes to the shape of its pre-curvature when it is 

extended from the preceding section. In contrast, a variable 

curvature section can take on a continuous array of 

curvatures usually ranging between zero (straight) and a 

maximum value. A single tube is required to construct a 

constant curvature section while two tubes are needed to 

construct a variable curvature section. See [11] for a detailed 

description of how variable and constant curvature sections 

are constructed. 

In the last few years, substantial progress has been made 

in developing concentric tube robotic technology [11]-[18]. 

Mechanics models have been developed for computing the 

kinematics [11], [12] and deformation due to external 

loading [14], [15]. Solution of the anatomically-constrained 

inverse kinematic problem has previously been considered 

[19], [20]. Real-time implementations of position control 

[11], [13] and stiffness control [17], [18] have been 

demonstrated in the laboratory and in beating-heart 

intracardiac animal trials. A topic that has received little 

attention is how to design concentric tube robots to meet the 

constraints imposed by a specific surgical task and 

anatomical environment. This is not surprising given the 

modeling complexity of these robots. In contrast to standard 

robots possessing rigid links and discrete joints, concentric 

tube robots are continuum robots. When their constituent 

pre-curved tubes are inserted inside each other, their 

common axis conforms to a mutual resultant curvature. By 

controlling relative translations and rotations of the tubes at 

their proximal ends, the shape and length of the robot can be 

varied. Thus, the tubes act as both links and flexure joints. 

The contribution of this paper is the development of a new 

approach to optimal design of concentric tube robots 

targeted at applications in neurosurgery. This paper is 

organized as follows. In section II we present a technique for 

generating patient-specific geometric models of VS from 

medical images and summarize general assumptions. In 

section III we introduce a new parameterization particularly 

suited for a given optimization strategy. In section IV we 

formulate a problem of reaching a single target point in a 

confined space as a constrained optimization problem. In 

section V we extend this optimization approach to a 

generalized algorithm for finding a robot capable of reaching 

multiple target points within the confined space. In section 

VI we present four clinically relevant examples the 

algorithms. We summarize our results in section VII. 

II. GEOMETRIC MODEL GENERATION 

To apply our planning algorithm to neurosurgical 

problems, we assume that the robot will be introduced into 

the CSF space of the lateral cerebral ventricle using a 

straight introducer passing through a burr hole in the frontal 

bone of the skull (see Fig. 2). We assume that the robot is 

free to navigate within the ventricular space but must avoid 

touching the delicate lining of the ventricular wall. For a 

typical ETV/CPC procedure, the objectives are as follows: 

1) to create a hole at the floor of the third ventricle and 2) to 

 
Fig. 4.  Geometric models of the VS of healthy (A) and hydrocephalic 

(B) subjects. The models were reconstructed from T1-weighted MR 

images. 

 
Fig. 3.  Concentric tube robot comprised of four telescoping sections 

that can be rotated and translated with respect to each other. 
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reach successive target points representing the location of the 

choroid plexus and apply radiofrequency energy to coagulate 

this highly vascular tissue.   

Cerebrospinal fluid, and to some extent the choroid plexus 

floating in it, can be reliably visualized with magnetic 

resonance (MR) imaging using T1- and T2-weighted 

sequences. These high-resolution image stacks can then be 

used to produce high fidelity models of the ventricular 

system. This technique involves semi-automatic 

segmentation of the CSF spaces in the VS, generation of a 

surface representing its boundary, and finally smoothing of 

the acquired surface using a Laplacian smoother. Using this 

approach we reconstructed a complete VS of a normal 

subject (Fig. 4A) and lateral and third ventricles of a 

hydrocephalic patient (Fig. 4B). The VS models are 

represented by triangular meshes and can be easily imported 

into Matlab (The MathWorks Inc., Natick, MA). We assume 

that the produced surfaces are closed and non-intersecting.  

III. PARAMETRIZATION 

For simplicity, we represent tube sections by their 

respective centerlines (circular arcs) as shown in Fig 5. The 

circular sections are labeled with subscript indices 

Ni ,,2,1 …= . For a section i , the radius of curvature and the 

arc length are defined as iR  and il  respectively, whereas 

iθ is the rotation angle of section 1+i  with respect to section 

i . As mentioned above, for practical neurosurgical 

applications, parameters such as the entry point 0x
�

and the 

entry direction 0n
�

, as well as the target point tx
�

, are 

generally predefined. Starting from the entry point we can 

arbitrarily select the end-point of the first section 1x
�

(Fig. 

5A). For a given 1x
�

, which can be moved freely in space, 

there exists only one circular arc passing through it, so by 

fixing the location of 1x
�

 we fully define the first section in 

space 1x
�

(Fig. 5A). Similarly, for the next section the start-

point 1x
�

, as well as the direction 1n
�

, are now constrained so 

that fixing 2x
�

in space leads to the full definition of the 

second section (Fig. 5B). We can recursively proceed in this 

fashion and introduce as many sections as needed with the 

last section’s end-point set at tN xx
��

= (Fig. 5B). In summary, 

specifying the points 11 ,, −Nxx
�

…

�

 allows us to define a 

unique N - sectioned robot. For each section it is then trivial 

to compute any other set of the kinematic variables for each 

individual section, such as the radii of curvature NRR ,,1 … , 

the curve lengths Nll ,,1 …  and the angles of 

rotation 11 ,, −Nθθ … . A similar approach, in which one 

computes section end-points for a given final section 

endpoint, has been shown to greatly reduce the complexity of 

the multisection inverse kinematics problem [22]. 

IV. SOLUTION FOR A SINGLE TARGET POINT 

The parameterization introduced in the previous section 

allows us to define families of robots with different numbers 

of sections by simply varying the locations of section end-

points 11 ,, −Nxx
�

…

�

. If we now consider the problem of 

reaching a single target point in a confined space, it is always 

possible to find a robot configuration capable of doing just 

that, provided there are a sufficient number of sections. 

Finding a robot configuration with a minimal number of 

sections constitutes an optimization problem where the 
 

Fig. 5.  Parameterization definition: we assume that the entry and exit 

points 0x
�

and tx
�

, as well as the direction 0n
�

are defined. For any 

arbitrarily selected 1x
�

 there exists only one circular arc passing through 

it, so by fixing the location of 1x
�

 we fully define the first section (A). 

Since specifying ix
�

also defines the direction in
�

for the next 

section 1+ix
�

, we can recursively specify points 11 ,, −Nxx
�

…

�

 , with 

tN xx
��

=  and thus fully define a unique N - sectioned robot (B). 

 

 
Fig. 6. Example 1:  the objective is to navigate from the entry point (blue 

dot) to the target point at tip of the temporal horn of the lateral ventricle 

(red dot). For a family of three sectioned robots, only up to 83% of the 

robot can be contained within the ventricle (A, B); the algorithm found a 

solution for a robot with four sections where the robot is wholly 

contained within the ventricle (C, D).  
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objective is to confine the robot within the anatomically 

defined boundaries of the VS. 

Specifically, we define a function 1f  which for a given 

robot configuration 11 ,, −Nxx
�

…

�

 returns a relative percentage 

of a robot residing outside the VS surfaceT  as follows: 

totaloutside llf =1 ,                                                       (1) 

where outsidel  is the total length of the subset of the robot 

remaining outside the surface and ∑ =
=

N

i
itotal ll

1
 is the total 

length of the robot. For 01 =f  the robot is confined within 

the surface. 

In cases with less restrictive surface geometries where 

multiple solutions are expected to exist, it makes sense to 

restrict the total length of the robot and thus avoid 

unnecessary looping or coiling of the robot. In order to 

achieve this, we define another term: 

totallf ⋅= α2 ,                                                               (2) 

where α  is a scaling parameter that ensures 12 <f . 

Accordingly, the cost function is the sum of the two terms:             





>+

=
=

0 if   1

0 if        

11

12

ff

ff
f                                                        (3)                                                     

We are now ready to define an algorithm as follows: 

Algorithm 1: 

1. Set 2=N  

2. Compute 

               ( )11
,,

,,minarg
11

−

−

N
xx

xxf

N

�

…

�

�

…

�

 

3. If 01 >f   

            Set 1+= NN  and go to 2 

          Else stop 

By tuning the cost function and adding additional terms, it 

is possible to control the design parameters of the robot, such 

as radii of curvature and arc lengths. These additional “soft” 

constraints are used to penalize tight turns or sections that 

are very short. For example, if one wishes to specify 

arbitrary radii of curvature NRR ,,1 … , the cost function in 

this case becomes: 





>+

=+
=

0 if      2

0 if   

11

132

ff

fff
f                                                 (4) 

where we introduce a new term 

∑
=

+

−
=

N

i ii

ii

i
RR

RR
f

1

3 β  ,                                                   (5) 

with the weightings for the individual sections iβ . To ensure 

boundedness of 3f , the weightings are scaled so 

that 1

1

=∑
=

N

i

iβ .  

In some cases it may be desirable to control the direction 

at the tip of the robot, which can be achieved in a similar 

fashion by adding an appropriate penalty term to the cost 

function.  

V. SOLUTION FOR MULTIPLE TARGET POINTS  

In most cases, a more realistic set of tasks for a surgical 

robot to undertake would include targeting multiple points or 

tracing a curve or a surface in a three dimensional (3D) 

workspace. For such cases the design goal is to identify the 

least complex robot (with a minimal number of sections) that 

can perform a given task or set of tasks. This defines a new 

optimization problem where we aim to find a minimal 

number of sections N , for which the set of radii of curvature 

for each individual target point converges to the same set 

NRR ,,1 … . To achieve this goal we use Algorithm 1 with the 

cost function (3) for the first target point, and then for the 

rest of the target points we use Algorithm 1 with the cost 

function (4), which includes a “soft” constraint (5) that 

prefers solutions closest to the radii of curvature found in the 

solution to the first target point. Our experience has shown 

that the target point that is furthest from the entry point is 

usually the most difficult to reach, and is a good choice for 

the first target point.  

We now extend the algorithms presented in the previous 

section for cases with multiple target points. In this algorithm 

we use the following notation: k
iR is the computed radius of 

curvature for a section Ni …,1=  and a target 

 

 
Fig. 7.  Example 2 - the objective is to navigate inside the VS of a 

hydrocephalic ventricle and to approach the base of the choroid plexus 

(red dot) from a predefined direction specified by the green vector. The 

algorithm succeeded in identifying a three sectioned robot with its tip 

direction aligned almost perfectly (red arrow) with the green arrow. 

A 

B 

670



  

point Mk …,1= . We assume that the target points are 

successively numbered, with 1 being the furthermost and 

M being the closet point with respect to the entry point.  

Algorithm 2: 

1. Find a minimal number of sections N for the first 

target point ( )1=k  using Algorithm 1 with the cost 

function (3).  

2. Compute radii of curvature 11
1 ,, NRR …  for the 

solution in 1, and set Ni
N

RR iii ,,1,
1

,1
…=== β .  

3. Using Algorithm 1 with the cost function (4), find 

solutions MkR
k
i ,,1, …= with constraints on the 

radii of curvature to be as close as possible 

to NRR ,,1 … . 

4. Given a set of solutions for all target points, 

compute (i) mean ∑
=

=
M

k

k
ii R

M
R

1

1ˆ and (ii) a 

normalized standard deviation of radii of curvature 

( )∑
=

−
⋅

=
M

k

i
k
i

i

i RR
MR

S

1

2ˆ
ˆ

1
 among all the sections. 

5. If ∑ > thri SS  

                If ∑ >− thrii RRR̂  

                     Set NiRR ii ,,1,ˆ
…==  and go to 3 

                Else 

                     Set 1+= NN  and go to 2  

           Else stop 

In step 5 there are two nested “if” statements. The outer 

“if” statement checks the standard deviation of the radii of 

curvature among all the sections for all target points: if the 

value is less than a threshold thrS then the algorithm has 

found a viable solution. If the distribution is too wide the 

approach we take is to impose convergence to the mean of 

this distribution. If the algorithm converges to a solution (i.e. 

the relative change with respect to previous iteration is less 

than a threshold thrR ), but the distribution is still higher than 

the threshold thrS , there are two possible solutions. The first 

solution is to increase the number of sections N  (this 

solution is implemented in the inner “if” statement). The 

second solution is to set the section with highest normalized 

deviation iS  as a variable curve section. In order to 

implement this, we relax the relative weighting iβ in (4) for 

this particular section with respect to other sections thus 

allowing other sections to converge on the “expense” of the 

variable-curvature section. These alternative solutions lead 

to two different types of robots: (i) comprised of only fixed-

curvature sections and (ii) comprised of one or more 

variable-curvature sections. 

VI. NUMERICAL SIMULATIONS 

Here we present four clinically relevant examples. The 

entry points and direction in all examples were selected to 

match as closely as possible to an ETV procedure: the 

former is defined by the need to avoid damaging motor areas 

in the brain while the latter is defined by targeting an 

anatomically specified spot at the floor of the third ventricle. 

Minimizations of objective functions were performed using a 

Pattern Search (PS) algorithm [21] available in Matlab’s 

Global Optimization toolbox. PS is a member of a family of 

optimization methods called Direct Search methods. Direct 

Search methods are designed to search a set of points around 

the current point, looking for a point that has less objective 

value than the current one has. Since the underlying problem 

is highly nonlinear, selecting a good starting point is 

 

 

 
Fig. 8.  Example 3 – the objective is to identify a single robot with 

minimal number of segments capable of reaching all six target points. A 

robot with only three segments was found by the algorithm. The design 

parameters for this robot are listed in Table I.  
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preferred from both the computational efficiency standpoint 

as well as for avoiding erroneous results. To aid in the 

selection of a good initial guess, we have developed a 

graphical user interface (GUI) in Matlab allowing the user to 

load a geometric model of the surface, select suitable start 

and end points with  directions,  add other constraints as 

needed, select the number of sections, and move the points 

11 ,, −Nxx
�

…

�

 freely in space.  The GUI updates the robot 

configuration and highlights parts of the robot traversing the 

geometric model into the brain. After the initial 

configuration and the set of constraints have been specified, 

the user runs one of the algorithms outlined above. 

A. Example 1 – Single target point  

In this example, the objective is to navigate through a 

torturous geometry of the normal ventricular system to the 

tip of the temporal horn of the lateral ventricle. For the best 

solution found by Algorithm 1 for a three ( 3=N ) sectioned 

robot, only 83% of the robot was contained within the 

ventricle (Fig 6A, B). After setting 4=N , the algorithm 

converged to a solution where a robot is wholly contained 

within the ventricle (Fig 6C, D).  

B. Example 2 – Single target point with a directional 

constraint 

In this example the objective is to navigate inside the VS 

of a hydrocephalic ventricle and to approach the base of the 

choroid plexus from a predefined direction specified by the 

vector =v
�

(-0.707,-0.707,-0.707) represented by a green 

arrow in Fig 7. For this task we employed a modified version 

of Algorithm 1 (with appropriate constraint on the direction 

at the tip of the robot ( )Nnf
��

⋅−= υβ 13 , where β is a 

weighting scalar and ⋅ is the dot product operator). The 

algorithm converged to a three sectioned robot with its tip 

tangent at =3n
�

(-0.61,-0.62,-0.5), represented by a red arrow 

in Fig 7. 

C. Example 3 – Multiple target points 

In this example the objective is to reproduce an ETV/CPC 

procedure: to navigate inside the ventricular system of a 

hydrocephalic brain and to trace the choroid plexus tissue 

with the tip of the robot and coagulate it. Based on MR 

images, we first identified coordinates of six target points 

along a virtual trajectory that would enable for effective 

coagulation of choroid plexus. Now the objective narrows 

down to finding a single robot configuration capable of 

reaching all the target points (i.e. 

MkNiRR i
k
i …… ,1,,,1 ==∀≈ ) so that the number of 

sections is minimal.  

For solving this problem we employed Algorithm 2 with 

the following parameters: 32 −= ESthr , 61 −= ERthr . The 

algorithm converged to a solution with 3=N  fixed-

curvature segments (Fig 8). Radii of curvature k
iR and 

section lengths k
il  for this solution are summarized in Table 

I.  

 

 
Fig. 9.  Example 4 – the objective is to identify a single robot with 

minimal number of segments capable of reaching all three target points. 

A robot with three (two constant- and one variable- curvature) 

segments was found by the algorithm. The design parameters for this 

robot are listed in Table II.  

TABLE II 

EXAMPLE 4: SECTION RADII OF CURVATURE AND LENGTHS  

Target 

Point 
R1 R2 R3 l1 l2 l3 

1 14.26 26.56 11.44 20.35 44.79 22.65 

2 14.26 26.56 10.84 22.26 26.01 21.48 

3 14.26 26.56 4.25 22.26 26 13.99 

Example 4: Radii of curvature 
k
iR (in mm) and section lengths 

k
il (in 

mm) computed by Algorithm 2 for all three target points. Note a very 

small deviation in the values of radii of curvature for the first two (fixed-

curvature) segments and large deviation in the last (variable-curvature) 

segment.   

 

TABLE I 

EXAMPLE 3: SECTION RADII OF CURVATURE AND LENGTHS  

Target 

Point 
R1 R2 R3 l1 l2 l3 

1 35.25 39.16 9.97 27.79 53.59 22.31 

2 35.7 39.16 9.97 26.67 51.02 15.71 

3 35.25 39.16 9.97 27.28 46.83 15.28 

4 35.25 39.16 9.97 26.17 42.08 19.02 

5 35.23 39.16 9.97 32.64 27.79 28.4 

6 34.14 39.16 10.04 39 9.04 30.85 

Example 3: Radii of curvature 
k
iR (in mm) and section lengths 

k
il (in 

mm) computed by Algorithm 2 for all six target points. Note a very small 

deviation in the values of radii of curvature for the three (fixed-curvature) 

segments among all target points.   
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D. Example 4 – Multiple target points 

Similar to the previous example, the objective is to find a 

robot configuration with the minimal number of sections 

capable of navigating inside the normal ventricular system 

and reaching all three target points. We again employed 

Algorithm 2 with the same threshold parameters. The 

algorithm converged to a solution with two fixed-curvature 

segments and one variable curvature segment (Fig 9). Radii 

of curvature k
iR and section lengths k

il  for this solution are 

summarized in Table II.  

VII. CONCLUSION 

In this paper we outlined a novel approach to optimal 

design of concentric tube robots for applications in 

neurosurgery. A novel parameterization method was 

described and integrated into an optimization loop using cost 

functions and a global pattern search minimization routine.  

The formulation was tuned to generate the least complex 

robot (in terms of numbers of sections) capable of reaching a 

single target point. We then demonstrated how to implement 

various constraints on robot design by adding additional 

terms to cost function. Subsequently, we extended the 

algorithm to consider multiple targets in a confined space. 

Finally, we demonstrated the performance of these 

algorithms in four clinically relevant examples. The 

algorithms typically converge in less than five minutes for 

problems involving a single target point on a standard PC. 

For more complex problems involving multiple targets, this 

time is multiplied by the number of target points and the 

number of outer loop iterations in Algorithm 2. Moderately 

complex problems with multiple targets such as Examples 3 

and 4 converge within two to three hours. The most 

computationally expensive step is the evaluation of the 

function 1f , namely finding if the current robot configuration 

violates the VS anatomy. Naturally, the computational time 

may be reduced by decreasing the resolution of the surface 

representing the anatomy, so it is beneficial to find maximal 

resolution that allows for appropriate representation of 

important anatomical structures.   

While the approach developed here permits design of a 

robot to accomplish coagulation of the choroid plexus, the 

ability to perform coordinated movements within a 

constrained space in the brain could be used to reach and 

remove tumors, vascular anomalies, seizure foci, and other 

targets.  As with current endoscopic techniques using 

handheld flexible devices, many options would be available 

for visualization and tissue ablation or manipulation.   

Indeed, navigation within CSF would also be possible within 

the spinal CSF space and other body cavities. On-demand 

assembly of an endoscopic device optimized for a particular 

patient or situation from available components would be 

possible.  Better clinical outcomes should follow improved 

technologies merging imaging and robotics.   
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